ارائه مدل یکپارچه سازی آمادگی فناورانه، سند بیانیه نیاز و ویژگی‌های محصول در مدیریت طراحی سیستمی کلان محصولات هواپایه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی صنایع ومرکز سیستم های دانشکده وپژوهشکده فنی ومهندسی، دانشگاه جامع امام حسین(ع)،

2 گروه مهندسی صنایع ومرکز سیستم های دانشکده وپژوهشکده فنی ومهندسی، دانشگاه جامع امام حسین(ع)، تهران، ایران

3 دانشیار مهندسی صنایع، دانشکده مهندسی صنایع، دانشگاه جامع امام حسین(ع)، تهران، ایران

4 استادیار مهندسی صنایع ، گروه مهندسی صنایع ومرکز سیستم های دانشکده وپژوهشکده فنی ومهندسی، دانشگاه جامع امام حسین(ع).

چکیده

هزینه، زمان و کیفیت طراحی محصولات کلان و یکپارچه، از عوامل مهم و ضروری در مدیریت طراحی است.هدف از انجام این پژوهش ارائه مدل یکپارچه‌سازی آمادگی فناورانه، سند بیانیه نیازو ویژگی‌های محصول درمدیریت طراحی سیستمی کلان محصولات هواپایه بومی بوده و به دنبال آن است تا ضمن شناسایی و اولویت‌بندی نیازهای واقعی و آتی بهره‌بردار، زمان تحویل نهایی محصول را با تحویل و تکامل تدریجی کاهش دهد. روش شناسی این پژوهش از نظر اجرا، توصیفی- پیمایشی و رویکرد پیمایشی و تحلیل داده‌ها به روش کمی و با استفاده از تحلیل عاملی اکتشافی و تاییدی است. نتایج حاصل از ضرایب معناداری بارهای عاملی وضرایب مسیر و نتیجه آزمون متغیرهای تحقیق بیانگر این است که ضریب معناداری 6 مسیر میان متغیرهای مشاهده پذیر و پنهان و مؤلفه‌های تعیین‌شده در مدل مفهومی تحقیق، از 1.96 بیشتر بوده و در سطح اطمینان 95 درصد، فرضیه‌های تحقیق و اعتبار مناسب مدل را تایید می نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Developing an integration model toward technological readiness, requirement statement document, and product features in macro-system design management: air- base products

نویسندگان [English]

  • Mehdi googerdchian 1
  • Mohsen Asadi 2
  • Seyed ziaodin Ghazizadeh Fard 3
  • Soheil Imamian 4
1 Department of Industrial Engineering and Systems Center of Technical and Engineering Faculty and Research Institute, Imam Hossein University
2 Department of Industrial Engineering & Systems Center, Techno-Engineering Faculty and Research Center, Imam Hossein Comprehensive University, Tehran, Iran.
3 Associate Prof. Department of Industrial Engineering and Systems Center of Technical and Engineering Faculty and Research Institute, Imam Hossein University
4 Assistant Prof. Department of Industrial Engineering and Systems Center of Technical and Engineering Faculty and Research Institute, Imam Hossein University.
چکیده [English]

Cost, quality and design time of macro integrated products are important and necessary factors in design management. The aim of the current research is to provide an integration model for technological readiness, requirements statement document and also description of product features in the management of macro system design in domestic air base products. In particular, the research intends to reduce the time required for the final delivery of the product by identifying and prioritizing the real and prospective needs of customers/users, while applying gradual changes and evolutionary measures. The research method is survey-descriptive in terms of execution. In fact, the approach of data survey and analysis is carried out quantitatively using exploratory and confirmatory factor analysis. The results obtained from the significant factor loading coefficient and path coefficients as well as the test results of the research variables show the following. The significant coefficient of six paths - among the visible and hidden variables in addition to the components determined in the research conceptual model - is higher than 1.96 at the 95% reliability level. These numerical results confirm the research hypothesis and validity of the model fit.

کلیدواژه‌ها [English]

  • Integration
  • technological readiness
  • requirement statement document
  • product features
  • macro system design management
  • air base products
Van Horn, D., Olewnik, A., & Lewis, K. (2012). Design analytics: capturing, understanding, and meeting customer needs using big data. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
Mir Fakhredini, S., & Shabani, A. (2015). Customer participation in new product development, scientific-research journal of business management, 8th year, 16. (in Persian)
Li, L., Wang, Z., Li, Y., & Liao, A. (2021). Impacts of consumer innovativeness on the intention to purchase sustainable products. Sustainable Production and Consumption, 27, 774-786.
Ghasem, F. (2017). Evaluation and use of technology levels, Defense Industries Educational and Research Institute publication, 2017. (in Persian)
Sauser, B., Ramirez-Marquez, J. E., Magnaye, R., & Tan, W. (2008). A system approach to expanding the technology readiness level within defense acquisition.
Conrow, E. H. (2011). Estimating technology readiness level coefficients. Journal of Spacecraft and Rockets, 48(1), 146-152.
Jimenez, H., & Mavris, D. N. (2014). Characterization of technology integration based on technology readiness levels. Journal of Aircraft, 51(1), 291-302.
Straub, J. (2015). In search of technology readiness level (TRL) 10. Aerospace Science and Technology, 46, 312-320.
Héder, M. (2017). From NASA to EU: the evolution of the TRL scale in Public Sector Innovation. The Innovation Journal, 22(2), 1-23.
Bates, C. A., & Clausen, C. (2020). Engineering readiness: How the TRL Figure of Merit coordinates technology development. Engineering studies, 12(1), 9-38.
Ma, J. (2021). Data-driven TRL Transition Predictions for Early Technology Development in Defence. Defence Science Journal, 71(6).
Zutin, G. C., Barbosa, G. F., de Barros, P. C., Tiburtino, E. B., Kawano, F. L. F., & Shiki, S. B. (2022). Readiness levels of Industry 4.0 technologies applied to aircraft manufacturing—a review, challenges and trends. The International Journal of Advanced Manufacturing Technology, 120(1-2), 927-943.
Mittal, V., & Gillespie, S. (2022). Using Model-Based Systems Engineering to Avoid Unnecessary Technology Resulting From Dynamic Requirements. IEEE Transactions on Engineering Management.
Shawalpour, S., & Tayibi Javed, E. (2019). typology of factors affecting the success of knowledge integration in production and development projects of complex products and systems, Technology Development Management Quarterly / Volume 8, Number 1. (in Persian)
Lu, S.-Y., ElMaraghy, W., Schuh, G., & Wilhelm, R. (2007). A scientific foundation of collaborative engineering. CIRP annals, 56(2), 605-634.
ElMaraghy, W. (2009). Knowledge Management in collaborative engineering. International Journal of Collaborative Engineering, 1(1-2), 114-124.
Guo, X., Liu, Y., Zhao, W., Wang, J., & Chen, L. (2021). Supporting resilient conceptual design using functional decomposition and conflict resolution. Advanced Engineering Informatics, 48, 101262.
Jiao, R., Commuri, S., Panchal, J., Milisavljevic-Syed, J., Allen, J. K., Mistree, F., & Schaefer, D. (2021). Design engineering in the age of industry 4.0. Journal of Mechanical Design, 143(7), 070801.
Wolff, C., Tendyra, P., & Wiecher, C. (2021). Agile Systems Engineering in Complex Scenarios. 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS).
NASA-SP 6105 .(2007). NASA Systems Engineering Handbook. s.l : National Aeronautics and Space Administration (NASA).
Azar, A., Ghadir Khaljani, J., & Hashemi Majumard, S. (2014). presenting a model for evaluating conceptual design options in complex defense product development projects considering the continuity and mutual influence of risks, Scientific-Research Journal of Management Improvement Year 9, No. 3, Piyai 29. (in Persian)
Dmitriev, A., & Mitroshkina, T. (2019). Improving the efficiency of aviation products design based on international standards and robust approaches. IOP Conference Series: Materials Science and Engineering.
Yousefi, O., Ghasemian, M., & Haj Heydari, N. (2018). "Evaluation of technology readiness level and estimation of costs related to it in light class submarine", Evaluation of technology readiness level and estimation of costs related to it. (in Persian)
Yu, J. C., Wahls, R. A., Esker, B. M., Lahey, L. T., Akiyama, D. G., Drake, M. L., & Christensen, D. P. (2021). Total Technology Readiness Level: Accelerating Technology Readiness for Aircraft Design. AIAA AVIATION 2021 FORUM.
Vik, J., Melås, A. M., Stræte, E. P., & Søraa, R. A. (2021). Balanced readiness level assessment (BRLa): A tool for exploring new and emerging technologies. Technological Forecasting and Social Change, 169, 120854.
Rodionov, N. (2022). Analysis and graphical visualization of the dependence of the quality parameters of the UAV airframe in the conditions of additive manufacturing based on QFD analysis.
Esadi, M. (2017). presentation of the design and development model of complex aerial systems for the special case of high-flying drones with a system engineering approach, Ph.D., Imam Hossein University, Tehran. (in Persian).