ارزیابی و مدلسازی قابلیت اطمینان موتور پرماسین با هدف بهبود عملکرد آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی صنایع دانشگاه یزد ایران

2 گروه مهندسی صنایع، دانشگاه یزد، یزد، ایران

چکیده

موتور پرماسین یک سیستم حیاتی مأموریت‌محور است که عدم کارایی آن باعث شکست ماموریت اصلی میشود. مطالعات جامع بر روی قابلیت‌اطمینان آن میتواند گامی در جهت بهبود عملکرد این سیستم باشد. هدف مقاله آنالیز قابلیت‌اطمینان موتور پرماسین در سناریوهای تعیین شده‌است. در این مقاله، ابتدا به بیان ساختار موتور پرماسین به عنوان سیستم مورد مطالعه پرداخته و ساختار‌شکست محصول برای این سیستم ترسیم و با توجه به ماموریت‌محور ‌بودن این سیستم 2سناریو زمانی اساس عملکرد شناور تعریف و نرخ خرابی برای قطعات حساس از استاندارد MilHDB-217 و NPRD-95 در دو حالت خوشبینانه و بدبینانه‌ محاسبه خواهد‌شد. با استفاده از ساختار شکست نحوه ارتباط اجزاء سیستم مشخص و بلوک‌دیاگرام قابلیت‌اطمینان در نرم‌افزارReliability‌Workbench ترسیم میگردد. در نهایت قابلیت‌اطمینان زیرسیستمها و سیستم مورد مطالعه برای هر دو سناریو‌کاری به صورت مجزا محاسبه می‌گردد. نتایج نشان میدهد که زیرسیستم درایو و موتور در توان نامی، دارای کمترین سطح قابلیت‌اطمینان نسبت به زیرسیستم‌های دیگر است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation and modeling of Permasin engine reliability with the aim of improving its performance

نویسندگان [English]

  • javad sheikh hafshejani 1
  • Mohammad Saber Fallah Nejad 2
1 Department of Industrial Engineering, Yazd University, Iran
2 Department of Industrial Engineering, Yazd University, Yazd, Iran
چکیده [English]

The Permasin engine is a critical mission-oriented system, the failure of which will cause the failure of the main mission. Comprehensive studies on its reliability can be a step towards improving the performance of this system. The aim of the article is to analyze the reliability of the Permasin engine in the specified scenarios. In this article, first of all, the structure of Permasin engine as the studied system is described and the breakdown structure of the product is drawn for this system, and according to the mission-oriented nature of this system, there are 2 time scenarios, the basis of floating performance, definition and failure rate for sensitive parts from the standard. MilHDB-217 and NPRD-95 will be calculated in two optimistic and pessimistic modes. By using the breakdown structure, the connection of specific system components and the reliability block diagram are drawn in the Reliability Workbench software. Finally, the reliability of the subsystems and the studied system is calculated separately for both working scenarios. The results show that drive and motor subsystem has the lowest level of reliability compared to other subsystems in rated power.

کلیدواژه‌ها [English]

  • Reliability
  • Permasyn engine
  • FMEA
  • RBD
  • failure rate
Parast, M., Kalahan, F., & Mamorian. M. (2007). Determining the type and timing of optimal maintenance and preventive repairs of multi-component systems based on reliability. Journal of technical faculty,41(106). (in Persian)
Rasti, V., Karbasian, M., & Asadollahi, A. (1389). Estimating the reliability of the electronic part of a space camera. 10th conference of the Iranian Aerospace Association. Second International Conference on Management Challenges and Solutions. (in Persian).
Mehdi, K., Al-Binin, Ya., & FatemehوR (1389).Presenting a model for reliability estimation in a complex submarine stage-oriented system using advanced functional block diagram. Second International Conference on Management Challenges and Solutions. (in Persian).
Karbasian, M., Salari, S., & Rashidian, F. (1389). Estimating the Reliability Improvement of Submarine Power Generation System Design. Second International Conference on Management Challenges and Solutions. (in Persian)
Siraj, H., Abbaspour, A., & Yousefi H. (2018). Calculation of reliability and availability of methanol fuel cell system with Markov chain approach. renewable and new energies. (in Persian)
Karbasian, M., Salari, S., & Rashidian, f. (2020). Estimating Reliability Improvement of Submarine Power Generation System Design. Hydrophysics, 5(2), 71–90. (in Persian)
Sefaldin, Asl., A, Fadaei, A. &, Ghanbari K, Zavari S. (2022). Reliability evaluation of wind turbine system by block diagram modeling method. Two quarterly renewable and new energies,9(1),1-7. (in Persian)
Bazzi, AM., Dominguez-Garcia, A., Krein PT. (2011). Markov reliability modeling for induction motor drives under field-oriented control. IEEE transactions on power electronics,27(2),534–46.
Song, Y., Wang B. (2012). Survey on reliability of power electronic systems. IEEE transactions on power electronics, 28(1),591–604.
Wang, B., Tian, G., & Liang, Y., Qiang T. (2014). Reliability modeling and evaluation of electric vehicle motor by using fault tree and extended stochastic Petri nets. Journal of Applied Mathematics, 11(3),25–208.
Chen, H., Yang, H., & Chen, Y., Iu HH-C. (2015). Reliability assessment of the switched reluctance motor drive under single switch chopping strategy. IEEE transactions on power electronics, 31(3),2395–408.
Olmi, C., Scuiller, F. (2015). Charpentier, Reliability assessment of an autonomous underwater vehicle propulsion by using electrical multi-phase drive. IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2015, 000965-000970.
Pfluegl, H. (2016). advanced simulation models and accelerated testing for the development of electric vehicles. Transportation Research Procedia, 14, p. 3641-3650.
Kim, Y. A. (2017). study on the estimation of bearing life of electric motor using ISO 281 and accelerated life, test2nd International Conference on System Reliability and Safety (ICSRS). 2017. IEEE.
Shu, X., Guo, Y., Yang, W., Wei, K., Zhu, Y., & Zou, H. (2019). A detailed reliability study of the motor system in pure electric vans by the approach of fault tree analysis. IEEE, Access,8:5295–307.
Pfluegl, H. (2019). Reliability modeling of power electronic converters. A general approach, 2019 20th workshop on control and modeling for power electronics (COMPEL): IEEE, 1-7.
Chen, H., Dong, F., Xu, S., Yang, J., & Chan, C. C. (2019). Reliability Evaluation of Switched Reluctance Motor Drive System in Electric Vehicle Based on Bayesian Network. IEEE Vehicle Power and Propulsion Conference (VPPC), IEEE, 2019. 1-4.
Xu, S., Chen, H., Dong, F., & Yang, J. (2019). Reliability analysis on power converter of switched reluctance machine system under different control strategies. IEEE Transactions on Industrial Electronics,66(8),6570–80.
Chen, Y., Liang, S., Li, W., Liang, H., & Wang, C. (2019). Faults and diagnosis methods of permanent magnet synchronous motors. A review. Applied Sciences, 9(10),2116.
Zacks S. (2012). Introduction to reliability analysis: probability models and statistical methods. Springer Science & Business Media.
Hamidi, M. A. (1383). Evaluation of reliability in floating system components of surface effect (case study of Yunus 22 hovercraft). master's thesis of quality engineering, Tehran, Malik Ashtar University of Technology. (in Persian)
isograph-reliability-workbench. (2019). fromhttps://downloadly.ir/software/engineering-specialized.
Goble W.M. (1998). The use and development of quantitative reliability and safety analysis in new product design.
Karbasian, M., Tabatabai, l.  (2013). Familiarity with reliability: the pillars of knowledge. (in Persian)