بهینه سازی مساله قابلیت اطمینان- افزونگی با استفاده از استرتژی فعال و ذخیره-سرد با رویکرد اعدادفازی مثلثی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مجتمع دانشگاهی مدیریت ومهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران

2 مجتمع دانشگاهی مدیریت و مهندسی صنایع ،تهران ،ایران

3 مجتمع دانشگاهی مدیریت و مهندسی صنایع، دانشگاه صنعتی مالک اشتر

4 دانشکده صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

امروزه با پیچیده تر شدن سیستم ها مفهوم قابلیت اطمینان و بهینه سازی مورد پژوهش و بررسی قرار گرفته است. در مراحل اولیه‌ی طراحی سیستم بسیاری از ویژگی‌های سیستم عدم قطعیت همراه است. از ان جا که استفاده از رویکرد احتمالی در حل مسائل قابلیت اطمینان دارای محدودیت هایی است و لذا استفاده از رویکرد فازی برای حل مسائل بهینه‌سازی قابلیت اطمینان بسیار کاراتر است. یکی از راه های بهینه‌سازی قابلیت اطمینان تخصیص افزونگی است. در پژوهش حاضر، مساله‌ی تخصیص قابلیت اطمینان – افزونگی با دو استراتژی فعال و استراتژی ذخیره- سرد با رویکرد اعداد فازی مثلثی در استفاده از پارامترهای توابع خرابی و محاسبه‌ی قابلیت اطمینان مورد بررسی قرار گرفته است. برای حل مساله‌ی فوق از الگوریتم ژنتیک استفاده گردیده است. نتایج حاصل با نتایج حاصل از حل به روش دقیق مقایسه شده و از نتایج حاصل از حل مدل قطعی بسیار کاراتر است.

کلیدواژه‌ها


عنوان مقاله [English]

Optimizing reliability-redundancy problem with active and cold-standby strategy with triangular fuzzy number approach

نویسندگان [English]

  • maryam Ganji 1
  • Mohammad Hossein karimi Gavareshki 2
  • Jafar Gheidar-Kheljani 3
  • Morteza Abbasi 4
1 Management and Industrial Engineering Department , Maleke-Ashtar University of Technology, Tehran ,Iran
2 Management and Industrial Engineering Department, Maleke-Ashtar University of Technology, Tehran ,Iran
3 Management and Industrial Engineering Department, Malek Ashtar University of Technology
4 Department of Industrial Engineering, Malek Ashtar University of Technology, Tehran, Iran
چکیده [English]

application of Reliability can be seen in many industrial, communication, In the early stages of system design, many system features such as reliability, weight, cost, and etc are associated with uncertainty due to various reasons such as lifespan, operational conditions, etc. Since the use of the probabilistic approach in solving reliability problems has limitations and can only be used in quantitative analysis of information and in many cases does not produce useful and sufficient results for experts, therefore the use of the approach Fuzzy is much more efficient for solving reliability optimization problems. One of the ways to optimize the reliability is to allocate redundancy. When using redundant components in a subsystem, how the redundant components are used is particular importance. In reliability-redundancy allocation problems, the reliability of components is not known in advance and is considered as a decision variable. In the current research, the reliability-redundancy allocation problem has been investigated with two active and cold-standby redundancy strategies and the triangular fuzzy number approach has been used in using the parameters of probability functions and reliability calculation in two model problems and an industrial system. Genetic algorithm has been used to solve the problem. In the implementation of the genetic algorithm, the the random, tournament and roulette wheel methods has been used to select parents and different types of mutation and crossover operators have been used to produce children. The results are more efficient than the results obtained from solving the deterministic model.

کلیدواژه‌ها [English]

  • Reliability-redundancy allocation problem
  • triangular fuzzy numbers
  • Genetic algorithm
  • active strategy
  • cold -standby strategy
Muhuri, P. Ashraf, Z., Danish Lohani, Q.M. (2017). Multi-Objective Reliability-Redundancy Allocation Problem with Interval Type-2 Fuzzy Uncertainty, IEEE Transaction on fuzzy system.
Abouei Ardakan, M. and Zeinal Hamadani, A. (2014). Reliability–redundancy allocation problem with cold-standby redundancy strategy, Simulation Modelling Practice and Theory,42. PP:107-118.
Chern, M. S. (1992). On the computational complexity of reliability redundancy allocation in a series system. Operations research letters, 11(5), 309-315.
Coit, D. W. (2003). Maximization of system reliability with a choice of redundancy strategies. IIE transactions, 35(6), 535-543.
Misra, K. B. and Ljubojevic, M. D. (1973). Optimal reliability design of a system: a new look. IEEE Transactions on Reliability, 22(5), 255-258.
Sahoo, L. (2017). Genetic Algorithm Based Approach for Reliability Redundancy Allocation Problems in Fuzzy Environment, International Journal of Mathematical, Engineering and Management Sciences, 2(4), PP 259-272.
Barlow, R.E. and Proschan, F. (1981). "Statistical theory of reliability and life testing probability model", to begin with, Silver Spring MD.
Garg, H., Rani, M., Sharma, S.P. and Vishwakarma, Y. (2014). Intuitionistic fuzzy
optimization technique for solving multi-objective reliability optimization problems in interval environment, Expert Systems with Applications, 41. PP 3157-3167.
Mahapatra, G.S. and Roy, T.K. (2006), Fuzzy multi-objective mathematical programming on reliability optimization model, Applied Mathematics and Computation ,174, PP643-659.
[10] Chang Yeh, W, Jung Hsieh, T, (2011), Solving reliability redundancy allocation problems using an artificial bee colony algorithm, Computers & Operations Research 38, 1456-1473.
Sahoo, L., Kumar Bhunia, A. and Kumar Kapur, P. (2012). Genetic algorithm based multi-objective reliability optimization in interval environment, Computers & Industrial Engineering, 62, PP 152-160.
Garg, H. and Sharma, S.P. (2013). Multi-objective reliability-redundancy allocation problem using particle swarm optimization, Computers & Industrial Engineering ,64. PP247-255.
Ashraf, Z., Muhuri, P. and Danish Lohani, Q.M. (2015). Particle Swam Optimization Based Reliability-Redundancy Allocation in a Type-2 Fuzzy Environment.
Abouei Ardakan, M., Sima, M., Zeinal Hamadani, A. and Coit, D.W. (2016). A novel strategy for redundant components in reliability-redundancy allocation problems, IIE Transactions.
 Kumar, A., Pant, S. and Ram, M. (2017). System Reliability Optimization Using Gray Wolf Optimizer Algorithm, Quality and Reliability Engineering International,33, 1327-1335.
Pirvi, A.S, Karbasian, M. and Aboui Ardakan, M. (2018), Presenting a new strategy for the allocation of surplus parts in the reliability optimization problem, Sharif Journal of Industrial Engineering and Management,1-35(1), P 167-176.
Reihaneh, M., Abouei Ardakan, M. and Eskandarpour, M. (2021). An exact algorithm for the redundancy allocation problem with heterogeneous components under the mixed redundancy strategy, European Journal of Operational Research.
Golmohammadi, E. and Abouei Ardakan, M. (2022). Reliability optimization problem with the mixed strategy, degrading components, and a periodic inspection and maintenance policy, Reliability Engineering and System Safety 223.
Salehi, S. and Fadeli, M. (2013). practical principles of maintenance and repair of industrial equipment, Arad Kitab Publishing House, first edition, PP 47-49.
Ebling, C. E. (1997). An introduction to reliability maintainability engineering. New York: McGraw-Hill.
Tavakkoli-Moghaddam, R., Safari, J. and Sassani, F. (2008). Reliability optimization of series- parallel systems with a choice of redundancy strategies using a genetic algorithm. Reliability Engineering and System Safety, 93. PP 550–556.
Coit, D.W. (2001). Cold standby redundancy optimization for nonrepairable systems. IIE Transactions, 33, PP 471–478.
Coelho, L.D.S. (2009). An efficient particle swarm approach for mixed-integer programming in reliability–redundancy optimization applications, Reliability Engineering& System Safety; 94(4), PP 830-837.
Zou, D., Gao, L., Li, S. and Wu, P. (2011). An effective global harmony search algorithm for reliability problems, Expert Syst. Appl, 38, P 4642–4648.
Wang, L. and Li, L. (2012), A coevolutionary differential evolution with harmony search for reliability–redundancy optimization, Expert Syst. Appl., Vol. 39, pp. 5271–5278, 2012.
Valian, E. and Valian, E. (2012). A cuckoo search algorithm by Lévy flights for solving reliability redundancy allocation problems, Eng. Optim.
Valian, E., Tavakoli, S., Mohanna, S. and Haghi, A. (2013). Improved cuckoo search for reliability optimization problems, Comput. Ind. Eng, 64, P 459–468.
Afonso, L.D., Mariani, V.C. and Coelho, L.S. (2013). Modified imperialist competitive algorithm based on attraction and repulsion concepts for reliability–redundancy optimization, Expert Syst. Appl, 40, PP 3794–3802.
Chen, T. C. (2006). IAs based approach for reliability redundancy allocation problems, Applied Mathematics and Computation, 182(2), PP 1556–1567.
Dhingra, A. K. (1992), “Optimal apportionment of reliability & redundancy in series systems under multiple objectives”, IEEE Trans. Reliab, 41(4), P 576–582.
Yokota, T., Gen, M. and Li, H. H. (1996). Genetic algorithm for nonlinear mixed-integer programming problems and its application, Computers and Industrial Engineering, 30(4), P 905–917.
Zou, D., Gao, L., Wu, J., Li, S. and Li, Y. (2010). “A novel global harmony search algorithm for reliability problems”, Computers & Industrial Engineering, Vol. 58, No. 2, pp. 307–316,
Taqvi Fard, M.A., Jalili, M.J., Seyed Naqvi, M.A. and Raisi Vanani, I. (2018). Designing a Model for Measuring the Competence of Information Technology Professionals with Fuzzy Expert System Approach, Journal of Productivity Management, 14(54), PP 24-44.
Barlow, R. E. and Proschan, F. (1975).  Statistical theory of reliability and life testing: probability models, Florida State Univ Tallahassee, 1975.